PROJECT TITLE

GR.NO.: -

GROUP MEMBER'S NAME

GUIDE NAME:

TUTOR:

TITLE OF THE PROJECT

Gr. No.:-----

Section:----

Name of students

Roll No.

<u>INDEX</u>

PART NO.	PART NAME	DIMENSION (in mm)	PAGE NUMBER	QUANTITY
1	Isometric View		1	
2	Base Plate	30x40x5	2	1
3	Supporting Plates	40x50x100x50	3	1
4	Axle of Worm Wheel	Ф16х150	4	1
5	Worm Wheel	Ф62.834	5	2
6	Worm	Ф25х33	6	2
7	Axle of Worm	Ф12.7х185	7	1
8	Supporting Plates for axle of worm	50x50x56.5	8	2
9	Handle	80x80x25	9	3
10	Collar	Ф77х30	10	1
11	Turntable	Ф28, 4х19	11	1
12	Supports for axle of worm wheel (II)	40x50x90	12	2
13	Axle of worm wheel (II)	Ф12.7х23	13	1
14	Support at base of ladder	25x25x100	14	
15	Rack	20x170	15	1
16	Pinion	Ф33	16	1
17	Axle of pinion	Ф12.7х200	17	1
18	Locking mechanism of rack and pinion	Ф57.43	18	1
19	Front view of Ladder system	200x75	19	1
20	Side view of Ladder System	200x20	20	1

Part No. Page No.

Spur Gear

Quantity Nos. of Teeth (N)

Module (M) 1.5

Outer diameter (OD) M(N+2)Rod diameter (ID) 12.7 or 16 Depth of cut 2.157 X M

5.2 mm drill & 1/4" tapping Tap hole size

Indexing calculation 40 / N

(All dimensions are in MM)

Required materials (Mild Steel)

Size: φ (diameter) X L(length)

BEVEL GEAR

Gear Ratio, if = G : g

Quantity = 2

Nos. of Teeth (N) =

Module (M) = 1.5

Outer diameter (OD) =

Face Angle $(\Theta_G + \alpha)$ = (for Lathe Machine)

Cutting Angle (ϕ_G) = (for milling Machine)

Rod diameter (ID) = 12.7 or 16Depth of cut = 2.157 X M

Tap hole size = 5.2 mm drill & ¼" tapping

Indexing calculation = 40 / N

Note: See gear calculation

(All dimensions are in MM)

Required materials (Mild Steel)

Size: φ (diameter) X L(length)

WORM & WORM WHEEL (GEAR)

Ratio of Worm & worm wheel 1: 20 1:40 or Outer diameter of worm (do) 22 = Pitch of the worm 4.7 Depth of the worm Diameter over sharp corner (worm wheel) Do' Throat Diameter of worm wheel (Do) Depth of cut of the worm wheel Nos. of teeth of worm wheel = Gashing Angle (for milling m/c.) Face width of worm wheel Rod diameter (ID) 12.7 or 16 5.2 mm drill & ¼" tapping Tap hole size = Indexing for teeth cutting 40/N

Note: See gear calculation

(All dimensions are in MM)

Required materials (Mild Steel) Size: φ (diameter) X L(length) Qty:

CHAIN SPROCKET GEAR

Quantity =

Nos. of Teeth (N) = Minimum 8

Module (M) = 1.5 Roller diameter = 0.315"

PCD = $N \times \frac{1}{2}$ / π

Outer diameter (OD) = PCD + Roller diameter

Root diameter = PCD - 0.315" Rod diameter (ID) = 12.7 or 16

Depth of cut = 8

Tap hole size = 5.2 mm drill & ¼" tapping

Indexing calculation = 40 / N

(All dimensions are in MM)

Required materials (Mild Steel)

Size: φ (diameter) X L(length)

GENEWA WHEEL

(All dimensions are in MM)

Required materials (Aluminum) / (MS)

Size: ϕ (110) X L(30) & ϕ (100) X L(25)

RACK

Module (M) = 1.5 Pitch = $M \times \pi$ Depth = 2.157 x M Size of square rod = $\frac{1}{2}$ x $\frac{1}{2}$

(All dimensions are in MM)

Required materials (Mild Steel)

Size: φ (diameter) X L(length)

DISC

Rod diameter (ID) = 12.7 or 16

(All dimensions are in MM)

Required materials (Mild Steel)

Size: φ (diameter) X L(length)

BASE PLATE

(All dimensions are in MM)

Size:

SUPPORT

(All dimensions are in MM)

Required materials (Mild Steel)

Flat Size: (50 X 10) X L & (25 X 6) X L

ROD

(All dimensions are in MM)

Required materials (Mild Steel)

Rod Size: (φ 16 X L) & (φ 12.7 X L)

<u>ANGLE</u>

(All dimensions are in MM)

Required materials (Mild Steel)

Angle Size: (50 X 50 X 10) X L & (25 x 25 X 3) X L

LEAD SCREW

(All dimensions are in MM)

Required materials (Mild Steel)

Angle Size: Φ 16 X L Qty:

HANDLE

CALCULATION FOR BEVEL GEAR

Que. A Pair of bevel gears is designed whose axes are at 90°. The pinion has 40 teeth and gear has 80 teeth with a module of 1.5 mm. Determine the dimensions of various principal parts and describe the various steps to manufacture it.

CALCULATION FOR SINGLE START WORM & WORM WHEEL(GEAR)

Outside diameter of Worm = 100 mm (Use in project diameter is 22 mm standard)

Pitch of the single start worm = 6 mm (Use in project Pitch is 4.7 mm standard)

Ratio of worm & worm wheel = 80 : 1

Face angle $\theta = 60^{\circ}$

Lead of worm = pitch x No. of start = $6 \times 1 = 6 \text{ mm}$

Addendum of the worm (a) $(d_0 - d)/2$ = 0.3183 x Pitch = 0.3183 x 6 = 1.9098 mm

Pitch diameter of the worm (d) = $d_0 - 2a = 100 - 2 \times 1.9098 = 96.1804 \text{ mm}$

Depth of worm tooth $(h_t) = (d_0 - d_r)/2$

= 0.6866 x Pitch = 0.6866 x 6 = 4.1196 mm

Root diameter of worm $(d_r) = d_0 - 2h_t = 100 - 2 \times 4.1196 = 91.7608 \text{ mm}$

Pitch diameter of the wheel (D) = $(N \times P) / \pi = 80 \times 6 / 3.1416 = 152.866 \text{ mm}$

Centre distance between worm & worm wheel (C) = (D + d) / 2 = 152.866 + 96.1804 / 2= 124.5232 mm

Throat diameter of the wheel $(D_0) = D + 2 a = 152.866 + 2 \times 1.9098 = 156.6856 mm$

Throat radius of the worm wheel (r) = $d_0/2 - 2a = 100/2 - 3.8196 = 46.1804$ mm

Diameter of the wheel over the sharp corners $(D_0) = 2r(1 - \cos \theta/2) + D_0 = 169.0618 \text{ mm}$

Face width of the wheel = 2.38 p + 6.35 mm = 20.63 mm

Helix angle of worm Tan $\alpha_{\omega} = \pi \, d / lead - 3.14 \, \text{x} \cdot 96.1804 / 6 = 50.334$ $\alpha_{\omega} = 88^{\circ} \cdot 51^{\circ}$

Gashing angle of the worm wheel $\alpha_g = 90 - \alpha_{\omega} = 1^{\circ} 9'$

Ref.book: Production Technology, Khanna Publication, by. Dr.R.K.Jain, edit by: Aman Singh, amans@,