PROJECT TITLE

GR.NO.: -

GROUP MEMBER'S NAME

GUIDE NAME:

TUTOR:

TITLE OF THE PROJECT

Gr. No. :--------
Section :------
Name of students
Roll No.

INDEX

PART NO.	PART NAME	DIMENSION (in mm)	PAGE NUMBER	QUANTITY
1	Isometric View		1	
2	Base Plate	$30 \times 40 \times 5$	2	1
3	Supporting Plates	$40 \times 50 \times 100 \times 50$	3	1
4	Axle of Worm Wheel	Ф16x150	4	1
5	Worm Wheel	(162.834	5	2
6	Worm	Ф25×33	6	2
7	Axle of Worm	Ф12.7×185	7	1
8	Supporting Plates for axle of worm	$50 \times 50 \times 56.5$	8	2
9	Handle	$80 \times 80 \times 25$	9	3
10	Collar	Ф77x30	10	1
11	Turntable	Ф28, 4×19	11	1
12	Supports for axle of worm wheel (II)	40x50x90	12	2
13	Axle of worm wheel (II)	Ф12.7×23	13	1
14	Support at base of ladder	$25 \times 25 \times 100$	14	
15	Rack	20x170	15	1
16	Pinion	Ф33	16	1
17	Axle of pinion	Ф12.7×200	17	1
18	Locking mechanism of rack and pinion	Ф57.43	18	1
19	Front view of Ladder system	200x75	19	1
20	Side view of Ladder System	200×20	20	1

Spur Gear

(All dimensions are in MM)
Required materials (Mild Steel)
Size: ϕ (diameter) X L(length) Qty:

Ref.book: Production Technology, Khanna Publication, by. Dr.R.K.Jain, edit by: Aman Singh, amans@,

BEVEL GEAR

$$
\text { Gear Ratio, if }=\mathrm{G}: \mathrm{g}
$$

Quantity
Nos. of Teeth (N) =
Module (M) =
Outer diameter (OD) =
Face Angle $\left(\theta_{\mathrm{G}}+\alpha\right) \quad=$
Cutting Angle (\emptyset_{G}) =
Rod diameter (ID) =
Depth of cut $=\quad 2.157 \mathrm{XM}$
Tap hole size $\quad=\quad 5.2 \mathrm{~mm}$ drill \& $1 /{ }^{1 / \prime}$ tapping Indexing calculation $=40 / \mathrm{N}$
(for Lathe Machine)
(for milling Machine)
12.7 or 16

Note: See gear calculation
(All dimensions are in MM)
Required materials (Mild Steel)
Size: ϕ (diameter) X L(length)
Qty:

WORM \& WORM WHEEL (GEAR)

Note: See gear calculation
(All dimensions are in MM)
Required materials (Mild Steel)
Size: ϕ (diameter) X L(length) Qty:

Ref.book: Production Technology, Khanna Publication, by. Dr.R.K.Jain, edit by: Aman Singh, amans@,

CHAIN SPROCKET GEAR

Quantity =
Nos. of Teeth (N) $=\quad$ Minimum 8
Module (M) $\quad=\quad 1.5$
Roller diameter $=0.315^{\prime \prime}$
PCD $\quad=\quad \mathrm{NX} 1 / 2^{\prime \prime} / \pi$
Outer diameter (OD) = PCD + Roller diameter
Root diameter $=\quad$ PCD - 0.315"
Rod diameter (ID) $\quad=\quad 12.7$ or 16
Depth of cut $=8$
Tap hole size $\quad=\quad 5.2 \mathrm{~mm}$ drill $\& \frac{11 / 4}{}$ tapping
Indexing calculation $=\quad 40 / \mathrm{N}$
(All dimensions are in MM)
Required materials (Mild Steel)
Size: ϕ (diameter) X L(length)
Qty:
Ref.book: Production Technology, Khanna Publication, by. Dr.R.K.Jain, edit by: Aman Singh, amans@,

GENEWA WHEEL

(All dimensions are in MM)
Required materials (Aluminum) / (MS)
Size: $\phi(110) \times \mathrm{L}(30) \& \phi(100) \mathrm{X} \mathrm{L}(25)$
Qty: 1
Ref.book: Production Technology, Khanna Publication, by. Dr.R.K.Jain, edit by: Aman Singh, amans@,

RACK

(All dimensions are in MM)

PART NO.

PAGE NO.

DISC

(All dimensions are in MM)

Required materials (Mild Steel)
Size: ϕ (diameter) X L(length)
Qty:

BASE PLATE

(All dimensions are in MM)

Required materials (Mild Steel)
 Size:
 Qty:

SUPPORT

(All dimensions are in MM)

$$
\begin{aligned}
& \text { Required materials (Mild Steel) } \\
& \text { Flat Size: }(50 \times 10) \times L \&(25 \times 6) \times L \\
& \text { Qty: } \\
& \hline
\end{aligned}
$$

ROD

(All dimensions are in MM)

$$
\begin{aligned}
& \text { Required materials (Mild Steel) } \\
& \text { Rod Size: } \quad(\phi 16 \mathrm{XL}) \&(\phi 12.7 \times \mathrm{L}) \\
& \text { Qty: }
\end{aligned}
$$

ANGLE

(All dimensions are in MM)

Required materials (Mild Steel)
Angle Size: $(50 \times 50 \times 10) \times L$ \& $(25 \times 25 \times 3) X L$ Qty:

LEAD SCREW

(All dimensions are in MM)

HANDLE

Ref.book: Production Technology, Khanna Publication, by. Dr.R.K.Jain, edit by: Aman Singh, amans@,

CALCULATION FOR BEVEL GEAR

Que. A Pair of bevel gears is designed whose axes are at 90°. The pinion has 40 teeth and gear has 80 teeth with a module of 1.5 mm . Determine the dimensions of various principal parts and describe the various steps to manufacture it.

Pitch diameter of gear $\mathrm{D}=\mathrm{N} \times \mathrm{m}=80 \times 1.5$
Pitch diancter of piniond $11 \times m-40 \times 1.5$

120 mm

60 mm

Pitch cone angle of gear $\operatorname{Tan} \theta_{G}=N / n=80 / 40=2$
$\theta_{G}=63^{\circ} 26^{\circ}$
Pitch cone angle of the pinion $\theta_{p}=90-\theta_{p}=90-63^{\circ} 26^{\prime}$
$\theta_{p}=26^{\circ} 34^{\prime}$
and

Pitch cone radious (R) for both gear ${\underset{R}{R}}_{a / d}$ pinion $=m / 2 \sqrt{ } N^{2}+n^{2}=1.5 / 2 \sqrt{ } 80^{2}+40^{2}=67.08 \mathrm{~mm}$ Addendum for both gear and pinion $=\mathrm{m} \quad=\quad \mathbf{1 . 5} \mathbf{m m}$

Addendum angle (α) Tan $\alpha=$ Addendum $/ \mathrm{R}=1.5 / 67.08$
$\alpha=1^{\circ} 18^{\prime}$
Dedendum for both gear and pinion $=1.157 \times \mathrm{m}=1.157 \times 1.5=$
1.736 mm

Dedendum angle (β) Tan $\beta=$ Dedendum $/ R=1.736 / 67.08$

$$
\beta=1^{\circ} 30^{\prime}
$$

Whole depth at large end of tooth $=$ Addendum + Dedendum $=1.5+1.736=3.326 \mathbf{m m}$
Tooth thickness at pitch line $=1.5708 \times \mathrm{m}=1.5708 \times 1.5=\quad \mathbf{2 . 3 5 5 2} \mathbf{~ m m}$
Cutting angle of gear $\varnothing_{G}=\theta_{G}-\beta=63^{\circ} 26^{\prime}-1^{\circ} 30^{\prime}=\quad \quad 61^{\circ} 56^{\prime} \quad$ (For milling M/C)

Cutting angle of pinion $\varnothing_{P}=\theta_{P}-\beta=26^{\circ} 34^{\prime}-1^{\circ} 30^{\prime}=\quad 25^{\circ} 4^{\prime} \quad$. (For milling M/C)
Face angle of gear $=\theta_{P}+\alpha \quad$ (For lathe M/C)
Angular addendum of gear $=$ addendum $\times \operatorname{Cos} \theta_{G}=1.5 \times \operatorname{Cos} 63^{\circ} 26^{\circ}=$
0.6708 mm

Angular addendum of pinion $=$ addendum $\operatorname{Cos} \theta_{P}=1.5 \times \operatorname{Cos} 26^{\circ} 34^{\prime}=\quad \mathbf{1 . 3 4 2} \mathbf{m m}$
Outside diameter of gear $=\mathrm{D}+2 \operatorname{Cos} \theta_{\mathrm{G}} \times \mathrm{m}=12 \Omega+2 \times \operatorname{Cos} 63^{\circ} 26^{\circ} \times 1.5=\mathbf{1 2 1 . 3 4 2} \mathbf{m m}$
Outside diameter of pinion $=d+2 \operatorname{Cos} \theta_{p} \times m=60+2 \times \operatorname{Cos} 26^{\circ} 34^{\prime} \times 1.5=62.684 \mathbf{m m}$ No. of teeth needed to select a cutter for the gear $N^{\prime}=N / \operatorname{Cos} \theta_{G}=?$

No. of teeth needed to select a cutter for the pinion $n^{\prime}=n / \operatorname{Cos} \theta_{P}=?$

CALCULATION FOR SINGLE START WORM \& WORM WHEEL(GEAR)

Outside diameter of Worm $=100 \mathrm{~mm}$
Pitch of the single start worm $=6 \mathrm{~mm}$
Ratio of worm \& worm wheel $=80: 1$
Face angle $\quad \theta=60^{\circ}$

Lead of worm $=$ pitch \times No. of start $=6 \times 1=$
6 mm

Addendum of the liom (a) (d_{0} - d) $/ 2$

$$
=0.3183 \times \text { Pitch }=0.3183 \times 6=\quad 1.9098 \mathrm{~mm}
$$

Pitch diameter of the worm $(d)=d_{o}-2 \mathrm{a}=100-2 \times 1.9098=\quad 96.1804 \mathbf{m m}$
Depth of worm tooth $\left(h_{t}\right)=\left(d_{n}-d_{r}\right) / 2$

$$
=0.6866 \times \text { Pitch }=0.6866 \times 6=\quad 4.1196 \mathrm{~mm}
$$

Root diameter of worm $\left(d_{r}\right)=d_{0}-2 h_{t}=100-2 \times 4.1196=$ 91.7608 mm

Pitch diameter of the wheel $(\mathbf{D})=(\mathrm{N} \times \mathrm{P}) / \pi=80 \times 6 / 3.1416=152.866 \mathrm{~mm}$

Centre distance between worm \& worm wheel $(C)=(D+d) / 2=152.866+96.1804 / 2$

$$
=124.5232 \mathrm{~mm}
$$

Throat diameter of the wheel $\left(\mathbf{D}_{0}\right)=\mathrm{D}+2 \mathrm{a}=152.866+2 \times 1.9098=\mathbf{1 5 6 . 6 8 5 6} \mathbf{~ m m}$

Throat radius of the worm wheel $(r)=d_{0} / 2-2 a=100 / 2-3.8196=46.1804 \mathrm{~mm}$

Diameter of the wheel over the sharp corners $\left(D_{0}{ }^{\prime}\right)=2 r(1-\cos \theta / 2)+D_{0}=\mathbf{1 6 9 . 0 6 1 8} \mathbf{~ m m}$

Face width of the wheel =

$$
=\quad 2.38 \mathrm{p}+6.35 \mathrm{~mm}=\quad \mathbf{2 0 . 6 3 \mathrm { mm }}
$$

Ifeli. angle of worm Ian $\alpha_{\omega}=\pi \mathrm{d} /$ /ead $-3.14 x^{\circ} 96.1804 / 6=50.334$

$$
\alpha_{\omega}=88^{\circ} 51^{\prime}
$$

Gashing angle of the worm wheel $\alpha_{\mathrm{g}}=90-\alpha_{\omega}=$ $1^{\circ} 9^{\prime}$

Ref.book: Production Technology, Khanna Publication, by. Dr.R.K.Jain, edit by: Aman Singh, amans@,

